Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula.

نویسندگان

  • G E Oldroyd
  • E M Engstrom
  • S R Long
چکیده

Legumes form a mutualistic symbiosis with bacteria collectively referred to as rhizobia. The bacteria induce the formation of nodules on the roots of the appropriate host plant, and this process requires the bacterial signaling molecule Nod factor. Although the interaction is beneficial to the plant, the number of nodules is tightly regulated. The gaseous plant hormone ethylene has been shown to be involved in the regulation of nodule number. The mechanism of the ethylene inhibition on nodulation is unclear, and the position at which ethylene acts in this complex developmental process is unknown. Here, we used direct and indirect ethylene application and inhibition of ethylene biosynthesis, together with comparison of wild-type plants and an ethylene-insensitive supernodulating mutant, to assess the effect of ethylene at multiple stages of this interaction in the model legume Medicago truncatula. We show that ethylene inhibited all of the early plant responses tested, including the initiation of calcium spiking. This finding suggests that ethylene acts upstream or at the point of calcium spiking in the Nod factor signal transduction pathway, either directly or through feedback from ethylene effects on downstream events. Furthermore, ethylene appears to regulate the frequency of calcium spiking, suggesting that it can modulate both the degree and the nature of Nod factor pathway activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula.

Nodulation is tightly regulated in legumes to ensure appropriate levels of nitrogen fixation without excessive depletion of carbon reserves. This balance is maintained by intimately linking nodulation and its regulation with plant hormones. It has previously been shown that ethylene and jasmonic acid (JA) are able to regulate nodulation and Nod factor signal transduction. Here, we characterize ...

متن کامل

Four genes of Medicago truncatula controlling components of a nod factor transduction pathway.

Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod fac...

متن کامل

Identification and Characterization of Nodulation- Signaling Pathway 2, a Gene of Medicago truncatula Involved in Nod Factor Signaling

Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod f...

متن کامل

Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells.

Modulation of intracellular calcium levels plays a key role in the transduction of many biological signals. Here, we characterize early calcium responses of wild-type and mutant Medicago truncatula plants to nodulation factors produced by the bacterial symbiont Sinorhizobium meliloti using a dual-dye ratiometric imaging technique. When presented with 1 nM Nod factor, root hair cells exhibited o...

متن کامل

Mastoparan activates calcium spiking analogous to Nod factor-induced responses in Medicago truncatula root hair cells.

The rhizobial-derived signaling molecule Nod factor is essential for the establishment of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Nod factor perception and signal transduction in the plant involve calcium spiking and lead to the induction of nodulation gene expression. It has previously been shown that the heterotrimeric G-protein agonist mastoparan can activate nodulation gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 2001